13,424 research outputs found

    Approaches for modeling magnetic nanoparticle dynamics

    Full text link
    Magnetic nanoparticles are useful biological probes as well as therapeutic agents. There have been several approaches used to model nanoparticle magnetization dynamics for both Brownian as well as N\'eel rotation. The magnetizations are often of interest and can be compared with experimental results. Here we summarize these approaches including the Stoner-Wohlfarth approach, and stochastic approaches including thermal fluctuations. Non-equilibrium related temperature effects can be described by a distribution function approach (Fokker-Planck equation) or a stochastic differential equation (Langevin equation). Approximate models in several regimes can be derived from these general approaches to simplify implementation

    The dual-frequency scatterometer reexamined

    Get PDF
    The utility of dual frequency scatterometers in measuring ocean wave directional spectra can be increased by adding third frequency to the system. The background which effectively limits signal detectability in dual frequency operation can be made a part of the signal through the addition of this third frequency. Signal detectability is limited only by system thermal noise and space based operation becomes more feasible

    Study of LINER sources with broad H(alpha) emission. X-ray properties and comparision to luminous AGN and X-ray binaries

    Full text link
    We study the X-ray properties of LINER sources with definite detection of a broad H(alpha) emission line in their optical spectra, LINER 1s from Ho et al. sample. These objects preferentially harbor a low luminosity active nucleus at the center and show small or no intrinsic absorption (<10^(22) cm^(-1)). We analyzed all available X-ray archived XMM-Newton and Chandra observations of 13 LINER 1s satisfying the above criterion in a systematic homogeneous way. We looked for any correlations between the X-ray properties and the intrinsic parameters of our sample of LINER 1s. An absorbed power-law gave a good fit to the spectra of 9 out of the 13 sources. A thermal component and an absorbed power-law were required in the remaining 4 sources. We found a photon index between 1.3\pm0.2 for the hardest source and 2.4^(+0.2)_(-0.3) for the softest one with a mean value of 1.9\pm0.2 and a dispersion sigma=0.3. The thermal component had a mean temperature kT~0.6 keV. Significant short (hours to days) time-scale variability is not common in the present sample and was observed in only 2 sources (NGC 3226 and NGC 4278). Three other sources indicate a possible variability with a low K-S test probability (2%-4%) that the nuclear emission originates from a constant source. Significant variability on months to years time-scales is detected in 7 out of the 9 sources observed more than once. No significant Fe K(alpha) emission line at 6.4 keV was detected and upper limits were derived for the 4 sources with a high enough signal to noise ratio around 6 keV. Finally, we established, for the first time for a sample of LINER 1s, that the photon index is significantly anticorrelated to L_(2-10 keV)/L_(Edd). This anticorrelation is similar to the one seen in XRBs in their low/hard state where a radiatively inefficient accretion flow is thought to be responsible for the X-ray emitted energy.Comment: 22 pages, 14 figures, accepted for publication in Astronomy and Astrophysic

    Transient Relativistically-Shifted Lines as a Probe of Black Hole Systems

    Full text link
    X-ray spectra of Seyfert galaxies have revealed a new type of X-ray spectral feature, one which appears to offer important new insight into the black hole system. XMM/Chandra revealed several narrow emission lines redward of Fe Kalpha in NGC 3516. Since that discovery the phenomenon has been observed in other Seyfert galaxies, e.g. NGC 7314 and ESO 198-G24. We present new evidence for a redshifted Fe line in XMM spectra of Mrk 766. These data reveal the first evidence for a significant shift in the energy of such a line, occurring over a few tens of kiloseconds. This shift may be interpreted as deceleration of an ejected blob of gas traveling close to the escape velocity.Comment: 13 pages, 5 figures (4 color) accepted by Ap

    Fan-spine topology formation through two-step reconnection driven by twisted flux emergence

    Full text link
    We address the formation of 3D nullpoint topologies in the solar corona by combining Hinode/XRT observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a 3D zero-beta MHD simulation. To this end, we model the boundary-driven kinematic emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil a two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.Comment: Accepted for publication in ApJ, 11 pages and 5 figure

    The Variable X-ray Spectrum of Markarian 766 - II. Time-Resolved Spectroscopy

    Full text link
    CONTEXT: The variable X-ray spectra of AGN systematically show steep power-law high states and hard-spectrum low states. The hard low state has previously been found to be a component with only weak variability. The origin of this component and the relative importance of effects such as absorption and relativistic blurring are currently not clear. AIMS: In a follow-up of previous principal components analysis, we aim to determine the relative importance of scattering and absorption effects on the time-varying X-ray spectrum of the narrow-line Seyfert 1 galaxy Mrk~766. METHODS: Time-resolved spectroscopy, slicing XMM and Suzaku data down to 25 ks elements, is used to investigate whether absorption or scattering components dominate the spectral variations in Mrk 766.Time-resolved spectroscopy confirms that spectral variability in Mrk 766 can be explained by either of two interpretations of principal components analysis. Detailed investigation confirm rapid changes in the relative strengths of scattered and direct emission or rapid changes in absorber covering fraction provide good explanations of most of the spectral variability. However, a strong correlation between the 6.97 keV absorption line and the primary continuum together with rapid opacity changes show that variations in a complex and multi-layered absorber, most likely a disk wind, are the dominant source of spectral variability in Mrk 76
    corecore